snorkelflow.sdk.QualityDataset
- class snorkelflow.sdk.QualityDataset(df, dataset_uid, label_schema_uid, model_node_uid, label_map)
Bases:
FTDataset- __init__(df, dataset_uid, label_schema_uid, model_node_uid, label_map)
\_\_init\_\_
__init__
Methods
__init__(df, dataset_uid, label_schema_uid, ...)append(ft_dataset)Append the given FTDataset to the current FTDataset. create_annotation_batches([assignees])Create an annotation batch for the ft dataset. export_data(format, filepath)Export the data in the FTDataset to the specified format and write to the provided filepath. filter([source_uids, splits, x_uids, ...])Filter the dataset based on the given filters. get_data()Get the data associated with the fine tuning dataset. get_x_uids()Get the x_uids in the FTDataset. mix(mix_on, weights, n_samples[, seed])Mix the dataset by split, source_uid, or slice based on the given weights, returning up to limit samples. sample(n[, seed])Sample n samples from the FTDataset. save(name)Save the FTDataset as a slice. set_as_dev_set()Resample the x_uids within the FTDataset as the dev set for the fine tuning application. - filter(source_uids=None, splits=None, x_uids=None, feature_hashes=None, slices=None, has_gt=None, labels=None, confidence_threshold=None)
Filter the dataset based on the given filters.
Parameters
Parameters
Returns
Returns
The filtered dataset
Return type
Return type
Name Type Default Info source_uids Optional[List[int]]NoneThe source uids to filter by. splits Optional[List[str]]NoneThe splits to filter by. x_uids Optional[List[str]]NoneThe x uids to filter by. feature_hashes Optional[List[str]]NoneThe feature hashes to filter by. slices Optional[List[Slice]]NoneThe slices to filter by, rows within at least one slice will be included. has_gt Optional[bool]NoneFilter by the existence / non-existence of ground truth. labels Optional[List[str]]NoneThe labels to filter by. confidence_threshold Optional[float]NoneThe confidence threshold to filter by.
filter
filter