snorkelflow.operators.dask_operator
- class snorkelflow.operators.dask_operator(*, input_schema, name=None, resources=None, resources_fn=None, output_schema=None)
Bases:
object
Decorator that wraps a function mapping a
dask.dataframe.DataFrame
to anotherdask.dataframe.DataFrame
.warningUsing@dask_operator
is only recommended for advanced users, as changes to indexes/partitions in the operator will be reflected internally in the Snorkel Flow execution pipeline. For most use cases,@pandas_operator
should be sufficient.Examples
The following example is a function that adds a new column
newcol
.import dask.dataframe as dd
from snorkelflow.operators import dask_operator
@dask_operator(name="set_newcol", input_schema={})
def set_newcol(ddf: dd.DataFrame) -> dd.DataFrame:
import pandas as pd
import numpy as np
from dask import dataframe as dd
import random
meta = ddf.dtypes.to_dict()
meta['newcol'] = np.dtype(float)
def _set_newcol(df: pd.DataFrame) -> pd.DataFrame:
df['newcol'] = [random.random() for _ in range(len(df))]
return df
ddf = dd.map_partitions(_set_newcol, ddf, meta=meta)
return ddf
sf.add_operator(set_newcol)Parameters
Parameters
Name Type Default Info name Optional[str]
None
Name of the Operator. resources Optional[Dict[str, Any]]
None
Resources passed in to f
viakwargs
resources_fn Optional[Callable[[], Dict[str, Any]]]
None
A function for generating a dictionary of values passed to f
viakwargs
, that are too expensive to serialize as resources.input_schema Dict[str, Any]
Dictionary mapping from column to dtype, used to validate the dtypes of the input dataframe. output_schema Optional[Dict[str, Any]]
None
Dictionary mapping from column to dtype, used to validate the dtypes of the output dataframe.
If not
None
, thenf
must not delete any dataframe columns, and all new columns must be specified along with types inoutput_schema
.- __init__(*, input_schema, name=None, resources=None, resources_fn=None, output_schema=None)
\_\_init\_\_
__init__
Methods
__init__
(*, input_schema[, name, resources, ...])