snorkelflow.sdk.ExternalModel
- class snorkelflow.sdk.ExternalModel(external_model_name, column_mappings, finetuning_provider_type=FinetuningProvider.AWS_SAGEMAKER)
Bases:
object
- __init__(external_model_name, column_mappings, finetuning_provider_type=FinetuningProvider.AWS_SAGEMAKER)
Class to represent a trained 3rd party model. Returns from ExternalModelTrainer.finetune
- Parameters:
external_model_name (
str
) – The name generated by the external model finetuning jobcolumn_mappings (
Dict
[FineTuningColumnType
,str
]) – The column mappings from FineTuningColumnType to the specific column names in the datasetfinetuning_provider_type (
FinetuningProvider
, default:<FinetuningProvider.AWS_SAGEMAKER: 'sagemaker'>
) – The 3rd party training service. Defaults to FinetuningProvider.AWS_SAGEMAKER.
Methods
__init__
(external_model_name, column_mappings)Class to represent a trained 3rd party model.
inference
(datasource_uids[, x_uids, ...])3rd Party Inference using the finetuned model.
- inference(datasource_uids, x_uids=None, generation_config=None, deployment_config=None, prompt_template=None, sync=True)
3rd Party Inference using the finetuned model.
- Parameters:
datasource_uids (
List
[int
]) – The datasource uids to use for inferencex_uids (
Optional
[List
[str
]], default:None
) – Optional x_uids for filtering the datasourcesgeneration_config (
Optional
[Dict
[str
,Any
]], default:None
) –Optional generation configuration, e.g.:
{
"max_new_tokens": 300,
"top_k": 50,
"top_p": 0.8,
"do_sample": True,
"temperature": 1,
}deployment_config (
Optional
[Dict
[str
,Any
]], default:None
) –Optional deployment configuration e.g.:
{
"instance_type": "ml.g5.12xlarge",
"instance_count": 1,
}prompt_template (
Optional
[str
], default:None
) – Optional prompt template to LLM inference. Defaults to {instruction}sync (
bool
, default:True
) – Whether to wait for the inference job to complete before returning
- Returns:
if (sync=True) returns the model source uid, else returns the job id
- Return type:
str